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Multiple Discrete Choice and Quantity with 

Order Statistic Marginal Utilities

This paper presents a random utility maximization model for individuals selecting discrete quantities from 
a set of n alternatives. Multiple alternatives with positive quantities may be selected. Diminishing 
marginal utility to quantity of each alternative is modeled via order statistics of independent Gumbel 
random variables. The model is parsimonious and tractable, admitting closed-form expressions for choice 
probabilities. As such, the model is amenable to maximum likelihood estimation of structural parameters 
from observed choices.

Probability functions recover binary logit probabilities under binary choice and a maximum quantity of 
one unit, and probability is monotonic in the quantity of each alternative. The monotonic property likely 
restricts the application of the model to a narrow range of settings. The property is a manifestation of a 
recursive relationship among Gumbel order statistic probabilities. This relationship and related properties
may lead to new models for capturing important complexities in a tractable manner. 

Keywords: Order Statistics; Random Utility Maximization; Choice Models

1. Introduction
The literature on multiple discrete choice (MDC) with continuous quantity decisions is extensive. The 

literature on MDC with discrete quantity decisions is not. This can be at least partially explained by 

tractability challenges that arise with the requirement of discrete quantities. 

For many real-world applications that exhibit discrete quantity choices, a continuous decision variable 

can be a reasonable approximation. This is more likely to be case in applications where observed choice 

quantities tend to be relatively large. For other settings, such as shopping where consumers tend to 

purchase a few units of several products, the continuous approximation may be problematic.

Gallego and Wang (2020) propose a tractable formulation for analyzing MDC models with discrete 

quantities called the threshold utility model (TUM). TUM specifies how alternatives are selected at a 

choice event. TUM underlies MDC models with continuous quantity decisions and includes all 

generalized extreme value models (McFadden 1978) as a special case. 

In this paper, I present a novel modeling strategy (Section 4) that defines random marginal utilities as 

differences between Gumbel order statistics. Order statistics capture diminishing marginal utility to 

consumption. I present properties related to Gumbel order statistics and use these properties to derive 

choice probability expressions for this model within a TUM framework (Section 6). Included is a theorem 

showing that a property of the difference of Gumbel random variables extends to a form of conditional 

Gumbel order statistics. This result is one key to obtaining closed-form expressions for choice 

probabilities. The characterizations of Gumbel order statistics in this paper may have implications for 
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other application areas. I briefly discuss parameter estimation and normative analysis, then conclude with 

a summary and reflection. Proofs are in the appendix.

2. Quantity Decisions as Nonnegative Continuous Variables
2.1. General Model
Individual j from a population selects quantities among n alternatives. Let uij(xi) denote individual j utility 

from xi 0 units of alternative i. Function uij(xi) is concave and increasing for all i and j. Individual j’s 

total utility as a function of continuous quantity vector x = (x1, …., xn) is
1

n

ij i
i

u x , i.e., utility is 

additively separable in the alternatives. 

Individual j chooses x to maximize total utility subject to an upper limit on the total quantity selected, 

denoted Bj:

1 1
max :

n n

ij i i j
i i

u x x B
x 0

. (1)

The corresponding Lagrangian is 

Lj(x, j) =
1 1

n n

ij i j j ij
i i

u x B x .

If uij are differentiable and the constraint is binding, then marginal utility at quantity xi is ij iu x =

'ij iu x and at optimal solution (x*, j) =
,

argmax ,
j

jL
x

x ,

*
ij iu x = j for all *

ix > 0, 0iju ≤ j for all *
ix = 0, *

1

n

i
i

x = Bj. (2)

The value of j represents the individual’s threshold marginal utility in the utility maximization problem; 

for any i satisfying 0iju > j, the value of xi is increased until marginal utility matches the threshold j.

From a microeconomic decision-making perspective, the decision model given in (1) can be viewed 

as a problem in the second stage of a consumer’s two-stage budgeting process proposed by Strotz (1957). 

In the first stage, an individual allocates total expenditures for an upcoming period across groups of 

products (e.g., food, clothing, recreation, etc.). In the second stage, the individual selects the quantities of 

products within each group. For example, Hausman et al. (1995) apply two-stage budgeting in an 

empirical estimation of recreation choice; individuals decide the total number of recreational trips (for an 

upcoming period) in the first stage, then choose the specific activities in the second stage. 

The two-stage budgeting process can be formalized as an iterative process wherein feedback from the 

previous cycle informs budget allocation in the next period. Gorman (1959) identifies necessary and 

sufficient conditions for which the first-stage allocation decision only requires price indices for each 
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product group (i.e., conditions under which detailed product prices are not needed for the first-stage

decision). A sufficient condition, for example, is additive separability of total utility across product 

groups (e.g., if there a N product groups, total utility = U1( ) + … + UN( ) where Ui is the utility function 

of product group i). Gorman (1959) shows that errors in an iterative budgeting cycle are small if price

changes from one period to the next are small.

2.2. Multiple Discrete-Continuous Extreme Value Model
Bhat (2005) proposes the multiple discrete-continuous extreme value (MDCEV) model (for recent 

discussions of MDCEV extensions and applications see, e.g., Bhat et al. 2020, Palma and Hess 2020,

Saxena et al. 2020). Because x is continuous and uij are continuous, increasing, differentiable functions, 

the budget constraint is binding, which implies 

xi > 0 for some i {1, …, n} (3)

for each individual. This is not restrictive, e.g., if x = 0 among alternatives 1 through n is possible, then an 

alternative 0 corresponding to not selecting 1 through n can be introduced to the choice set.

MDCEV is appealing because (1) it admits closed-form probabilities for choice decisions among a 

population of individuals and (2) it reduces to the widely accepted multinomial logit (MNL) choice 

probability if only one alternative is selected. I summarize this model below. 

The utility of quantity xi of alternative i of a randomly selected individual from the population is 

i iu xiui = ii ia
i ie b xi

where ii are iid Gumbel random variables that capture idiosyncratic (unknown to the researcher) 

preferences of individuals. The remaining parameters, ai, bi, i reflect observed characteristics of 

alternative i utility, and i (0, 1] to reflect positive and diminishing marginal utility to quantity.

Note that for realization i of ii , i iu x =
1ln i

i i i i ia b x
e . Assuming the same Lagrange multiplier 

among individuals in the population, optimal x* satisfies 
*ln 1 lni i i i i ia b x = ln for all *

ix > 0 

ln 1 lni i i i ia b < ln for all *
ix = 0.

Define

vi(xi) = ln 1 lni i i i ia b x

v0 = ln

xx = 1,..., nx x = quantity choice vector for a randomly selected individual from the population.

Then the fraction of the population that selects quantity vector x = (x1, …, xk, 0, …, 0) where xi > 0 for i =

1, …, k and k {1, …, n} is 
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P x x = 1 1 1 0 0 1 1 0 0,..., , 0 ,..., 0k k k k k n nP v x v v x v v v v v0 0, ,1 01 0 , , k k k 0 n11 0 0,..., ,...,1 1 0k k k 0 nv v x vv v x1 0 ,..., k k kk 0 v0,...,,...,0 n01 .

(Due to (3), P x 0 = 0.). Since ii are iid, P x x can be expressed as a product of probabilities, i.e., 

P x x = 0 0
1 1

0
k n

i i i i i
i i k

P v v x P v v0 i0 iP v v0PP0i 0i 0i v v xv0i .

Substituting Gumbel probabilities into the above, normalizing, and simplifying yields

P x x = 1

11

1

1 1 !
1

i i

j j

k
v x

k k
i i i i

k
nii i i i v x

j

e
b x k

b x
e

(4)

(Bhat 2005). If k = 1, then (4) reduces to the form of MNL choice probability, i.e., 

1,0,...,0P xx = 1 1

1

1

j j
n

v xv x

j
e e . (5)

The closed-form expression for choice probabilities allows for efficient estimation of utility function 

parameters, e.g., via maximum likelihood estimation (MLE) methods. 

3. Discrete Quantity Choices
3.1. Adaptation of Classic Discrete Choice Models
One alternative for modeling multiple discrete choice with discrete quantities is the MNL model with a 

choice set that includes all combinations of quantity decisions (Train 2009). For example, if m = n = 2, 

then each individual selects one of (1 + m)n = 9 alternatives corresponding to X = {(0, 0), (0, 1), (0, 2), (1, 

0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. The MNL-based model has the advantage of simple probability 

expressions. However, the model has the disadvantage of overfitting when estimating the parameters from 

the data when m is not small, or when observed data cover only a fraction of the quantity-choice set. The 

utilities associated with alternative i = 1, …, n have m + 1 parameters, one for each possible discrete 

quantity (and (m + 1)n – 1 parameters in total, after normalizing a parameter to value 1). For comparison, 

MDCEV has up to three parameters (i.e., ai, bi, i) for each ui function, reflecting a parsimonious 

relationship governing marginal utility. This observation motivates exploration of alternatives to the 

above MNL-based model that explicitly account for discrete quantity decisions. 

The next section considers the special case where the quantity available in any alternative is limited to 

one. The properties and intuition associated with this special case provide a foundation for generalized 

models in subsequent sections.
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3.2. Binary Quantity Decisions
In this section and the remainder of the paper, I present model elements in a manner that allows for two 

interpretations of the set of choice alternatives: (1) including an outside option against which the utilities 

of inside options are compared, (2) not including an outside option for comparison. I clarify the

distinction between these interpretations after introducing necessary background and notation. 

There are n alternatives. Each alternative i for i = 1, …, n is either selected or not selected, i.e., 

quantity decisions are binary. Let 

0i iU u uU ui u 0i ui 0u uiu , i = 1, …, n

denote the (net) utility of alternative i where iuiu for i = 0, 1, …, n are random variables (model primitives).

At each choice event, an individual selects the alternatives with the highest utilities subject to a

constraint that, on average, the number of alternatives selected at each event is no more than B. The 

problem can be expressed as

0 1ˆ: , 1

ˆmax : ,
i

n

i i
ii x U

E U E x U B
1

n

E BBE ˆ̂::UUiU (6)

where ˆ , ix U = 1 if Ui ≥ ; otherwise ˆ , ix U = 0. Note that ˆ , ix U is consistent with the decision 
rule given in (2). The problem is referred to as the threshold utility model in Gallego and Wang (2020).1

If
1

n

i
i

E UUiU ≤ B, then the constraint is nonbinding and the threshold is = 0; otherwise the threshold is 

the solution to 

1

ˆ ,
n

i
i

E x U = B. (7)

The probability that alternative i is selected is

1iP x = iP UUiUi , i = 1, …, n. (8)

If iuiu = i ia i , i = 0, 1, …, n where ii are iid Gumbel random variables (normalized with location 

parameter 0 and scale parameter 1), then the choice probabilities have the following binary logit form: 

1iP x = 0 0i iP a a0 00 0a a0 0a a =
0

01

i

i

a a

a a

e
e

, i = 1, …, n. (9)

Note that iUiU can be interpreted as the utility of alternative i. In this case, an individual selects among 

n alternatives; characteristics of any outside option are not relevant. Alternatively, one may interpret iuiu as

1 A more general formulation allows the threshold to be different for each alternative, i.e., maximize over = ( 1,
…, n) instead of scalar . Gallego and Wang (2020, Theorem 1) show that the optimal solution is a scalar, i.e., i =

for all i.
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the utility of inside option i that is compared against the best outside option with utility 0u0u when an 

individual makes choice decisions; under this interpretation, alternative i is not selected if the utility does 

not exceed the outside option as shown in (8). Consideration of a no-purchase option within a choice 

model is relatively commonplace in the literature and this interpretation may be useful for some

applications. For example, a firm interested in estimating parameters of a choice model will likely have 

data on choice decisions of its own products and may be able to develop reasonable estimates of market 

size. However, the firm is unlikely to have access to choice data on competitor products. In this case, it 

may be convenient to recognize the best outside option in the model. It is important to emphasize that this 

approach to estimation requires an implicit assumption on consumers’ microeconomic decision-making 

model: consumers view the firm’s offerings within the product category as a group that warrants its own 

constraint on choice decisions (see (6)), e.g., competitor products, if considered for selection, fall into a 

separate group.

One might infer from (8) or (9) that the model is not appropriate for normative analysis, e.g., not 

capturing how changes in one alternative may affect choice probabilities of other alternatives. However, 

as with MDCEV, interactions are captured through the relationship between the threshold parameter and 

B. Furthermore, normative analysis of the model under Gumbel error terms is relatively tractable. For 

example, let ia = 1,...,i iMa a denote the vector of predictors for alternative i. Let = ( 1, …, M) denote 

the utility coefficient vector estimated from the data, e.g., T
iα a is an estimate of ai – a0 – in (9) for i =

1, …, n. Consider a change in attribute l of alternative i from ila to il ila . If one accepts an 

assumption that the value of B remains stable as changes in alternatives are introduced (or can be 

predicted), then the updated choice probabilities are 

1jP x 1j 1jx j =
T

j l il

T
j l il

I j i

I j i

e
e e

α a

α a
, j = 1, …, n

where I( ) in an indicator function and is the solution to 

1

T
j l il

T
j l il

I j in

I j i
j

e
e e

α a

α a
= B. (10)

While cannot be expressed in closed-form, the left-hand side of (10) is decreasing in , and thus can 

be efficiently obtained via bisection search. 

3.3. Quantity Decisions as Nonnegative Integers

Up to m units of each alternative may be selected where m > 1. For quantity x ∈ {1, …, m}, let iu xiui =

1i iu x u xiui where 0iuiu := 0 for i = 1, …, n. The random marginal (net) utility of the xth unit of 
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alternative i is 0iu x u0iu uiu xi . The xth unit of alternative i will not be selected if marginal utility is negative, 

i.e., if 0iu x u0iu x uiu xi < 0. Note that 0
1

x

i
k

u k u is the total gain in utility from each additional unit of 

alternative i up to x units. The threshold optimization problem can be expressed as

0 0 0 00 1 1 1 1
max | :

n m n m

i i i i
i x i x

E u x u u x u P u x u P u x u BBB0iu x ux u0iPPP 0i 0i0iu x uu xi0i u0ui PPPPPP :0i0i 0i0i

The probability that x units of alternative i are selected by a random individual in the population is

iP x x = 1i iP x x P x x = 0 01i iP u x u P u x u0i 0 0i 0u x uu0i 0 0P u x uxP . (11)

Empirical estimation of utility parameters requires specification of a model governing random 

marginal utilities. One alternative appears in Gallego and Wang (2020): For i = 1, …, n, x = 1, …, m,

0iu x u0iu x uiu xi = 0i i ig x u u h x

ig x = 1i ig x g x

ih x = 1i ih x h x .

Function gi(x) is concave increasing, function hi(x) is convex, and gi(0)= hi(0) = 0. These properties imply 

that marginal utility 0iu x u is decreasing in quantity. Diminishing marginal utility assures that the xth

unit of an alternative will not be selected by an individual unless the (x-1)th unit is selected, e.g., 

iP x x is decreasing in x. Threshold is the solution to 

0
1 1

P
n m

i
i x

u x uiiu ui = B;

= 0 if the constraint is nonbinding.2 If ii are iid Gumbel normalized random variables, then choice 

probabilities can be expressed in closed form:

iP x x = 0 0
i

i i
i

h x
P a a

g x0 000 0a a0 0 =
0 0

1

1
i i

i i
i i

h x h x
a a a a

g x g xe e (12)

P x x =
1

1
n

i i i i
i

P x x P x x . (13)

The simplicity of (12) motivates an alternative to MLE based on (13): each observed event ixix = x for x ≥ 1 

in the data generates events 1ix 1ix , …, ix xix xi in an augmented dataset. While the form and parameters of 

2 Gallego and Wang (2020, Theorem 6) consider the generalized threshold optimization problem of maximizing 
over = ( 1, …, n) and show the optimal solution is a scalar for their model.
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functions ig x and ih x must be specified, the choice probably model can be efficiently estimated 

from the augmented dataset due to the simple binary logit form in (12).

In summary, the formulation yielding choice probabilities given by (11) defines a class of models for 

multiple discrete choice and discrete quantity in a manner consistent with random utility maximization. 

Specific models within this class depend upon the model primitives that govern that random marginal 

utility of each alternative i and quantity xi, i.e., 0iu x u0iu x uiu xi . One subclass of (11) specifies functions that 

map a random variable for net utility of each alternative to marginal utility at different values of xi, e.g., as 

in (13). An alternative subclass specifies probability distribution functions for random variables,

0iu x u0iu uiu xi , i = 1, …, n and x = 1, …, m. In the following sections, I introduce such a model and derive 

choice probability expressions. The model relies on order statistics, which capture the property of 

diminishing marginal return to quantity for each alternative.  

4. Diminishing Marginal Utility as Order Statistics
The law of diminishing marginal utility, as originally proposed by Marshall (1920), states that the gain in 

utility from each unit of consumption decreases in quantity. This feature can be captured through order 

statistics, as described and illustrated in (14) below.

For xi {1, …, m} units of alternative i {1, …, n}, let 

i iu xiui =
1

ix
j

i i i
j

a x i

i iu xiui = ix
i ia i

0u0u = 0 0a 0

where 1
ii = 1max ,...,i im , …, 1m

ii = 1 2
1max ,..., \ ,..., m

i im i i\\\ , m
ii = 1min ,...,i im

and 00 , ijij for i = 1, …, n, j = 1, …, m are iid random variables.3 During a choice event, an individual 

observes the realizations of random variables 0u0u and i iu xiui for i = 1, …, n and xi = 1, …, m, then 

selects quantities of alternatives for which marginal utility exceeds threshold . While consecutive 

marginal utilities of an alternative exhibit randomness over choice events, realizations exhibit diminishing 

marginal utility, i.e.,  

1iuiu ≥ … ≥ iu miui . (14)

3 This indexing of largest-to-smallest is the reverse of the standard order-statistic convention of smallest-to-largest, 
but is more convenient for our setting.
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The specific character of random diminishing marginal utility depends on the probability distribution of 

error terms 00 , ijij .

This paper presents results for the case where 00 and ijij are Gumbel random variables, which I refer 

to as OS-G model (order statistics – Gumbel). The location parameter is normalized to 0 without loss of 

generality. The scale parameter is . Figure 1 illustrates expected marginal net utility for the OS-G model 

at several values of as quantity xi ranges between 1 and 25.

Figure 1. Plot of 0i iE u x u0i 0iu x ui with m = 25, a0 = ai = 0, and = 1 (dotted curve), = 2 (dashed 

curve), = 4 (solid curve). The x-axis ranges from xi = 1 to xi = 25. Expressions for 0i iE u x u0i 0iu x ui

appear in Lemma 6.

5. Existing Theory
5.1. Gumbel Distribution

The pdf and cdf of a Gumbel random variable zz with location parameter and scale parameter are

f(z) =
/

/
z

z
ee e , z (- , ) (15)

F(z) =
/zee , z (- , ) (16)

with mean and variance 

E z = + where =
0

lnte tdt 0.577 is the Euler-Mascheroni constant (17)

V z = 2 2 / 6 .

Lemma 1 (Gumbel 1954). The Gumbel distribution is closed under maximization. That is, for 

independent Gumbel random variables 1,..., mz z1,..., mz z1,..., with scale parameter and location parameters 1, …, 
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m, 1zz = 1max ,..., mz z is a Gumbel random variable with scale parameter and location parameter =

/

1
ln i

m

i
e .

Corollary 1. 1
ii = 1max ,...,i im is a Gumbel random variable with scale parameter and location 

parameter lnm.

Lemma 2 (Train 2009, p. 35). The difference between two independent Gumbel random variables with 

the same scale parameter is a logistic random variable. That is, for Gumbel 1z1z and 2z2z with scale 

parameter and location parameters 1 and 2, zz = 2 1z z2 1z z2 is logistic with mean 2 – 1, variance 

2 2 / 3 , and cdf

zF zzFFFF =
2 1 /

1
1 ze

.

5.2. Order Statistic Distribution Functions

Let 1,..., mz z1,..., mz z1,..., denote iid continuous random variables with pdf f and cdf F. Let 1zz = 1max ,..., mz z , 2zz =

1
1max ,..., \mz z z\\ , 3zz = 1 2

1max ,..., \ ,mz z z z , …, mzz = 1min ,..., mz z . Then

xz
f z

z
ffff

z
=

1! 1
1 ! !

xm xm F z F z f z
x m x

(18)

xz
F z

z
F =

1

0
1

x jm j

j

m
F z F z

j
(19)

1 ,..., xz z
f z

,...,z z,...,
fffff

z
=

1

!
!

x
m x

x j
j

m F z f z
m x

, z1 z2 … zx, x n (20)

(see Chapter 2 in David 1981). Expressions (18) and (19) show how the probability density function and 

the cumulative distribution function of an order statistic xzz relate to the corresponding functions of 

random variable iziz . Expression (20) shows the joint density for the xth largest order statistics. These 

results are used in the next section. 

6. Theory Development
To simplify presentation, parameters a0 and are normalized to zero, e.g., by redefining ai = ai – a0 –

for all i. Thus 

iP x x = 0iP u x u0i 0iu ui = 0
x

i iP aa0 i ii i00 iai0 ii , i = 1, …, n, x = 1, …, m. (21)

Define

Ai = /iae for i = 0, 1, …, n
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(e.g., A0 = 1). Corollary 2 follows from (15) – (20).

Corollary 2. For x {1, …, m},

0uF t
0uu =

/tee

0uf t
0u0u =

/
/

t
t

ee e

iu xF t
iui

=
/ /

1

0
1

t t
i i

x jm j A e A e

j

m
e e

j

iu xf t
iuiui

=
/ /

/ 11 1
t t

i i

t xm x A e A eim A ex e e
x

1 ,...,i iu u xf t
iuiui

=
/ /

11
/!

!

xx t tj x
ij

jj

x A e m x et
iAm e e

m x
, t1 … tx.

Lemmas 3 – 5 provide the foundation for theorems 1 through 3 that pertain to the probability 

distribution of random choice vector xx = 1,..., nx x . Lemma 6 describes the expected value of marginal 

utility.

Lemma 3. For any i {1, …, n},

1iP x =
1

i

i

mA
mA

(22)

0iP x = 1
1 imA

. (23)

Lemma 4. Let 0 1u0u = 0u in (25) and (27) below. For any i {0, 1, …, n} and t,

1i iP u x t u xiiui =
/ /

1
t t

i i
xm x A e A em

e e
x

, x {1, …, m} (24)

1iP u tiiu ti =
/t

imA ee (25)

iP u m tiiu ti = 1i iP u m t u miiui =
/

1
t

i
m

A ee (26)

1iP u tiiu ti =
/

1
t

imA ee . (27)

Lemma 5. For a, b > 0 and nonnegative integers m x,

0
1

x
j

j

m x bm x
x j a m x j b

=
0

x

j

m j b
a m j b

. (28)

Lemma 6. For x = 1, …, m,
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iE u xiiui =
1

0

1 ln 1
1

1

x
j

i
j

m x m x j
a x

x j m x j
(29)

Theorem 1. Marginal probability functions are

iP x x =
1

0 1

x
i

j i

m j A
m j A

, x {1, …, m} (30)

1|i iP x x x x1|i i|x x1|i i1|x xx x1| i1| =
1

i

i

m x A
m x A

, x {1, …, m – 1} (31)

|i iP x x x x|i i|x x x x|i i|x xx x| i| = 1
1 im x A

, x {1, …, m} (32)

iP x x =
1

0

1
1 1

x
i

ji i

m j A
m x A m j A

, x {0, …, m} (33)

= 1
1

i i
i

i

A m x A
P x x

m x A
, x {1, …, m}. (34)

Notice in (34) that the probability that x units is selected is proportional to the probability that x – 1 units 

is selected. Whether the probability is increasing in x or decreasing in x depends on the value of Ai, as 

formalized in the following corollary.  

Corollary 3. If Ai = 1, then iP x x =
1

1 m
for all x {0, …, m} and iE x =

2
m

. If Ai < 1, then

0iP x > … > iP x m and iE x <
2
m

. If Ai > 1, then 0iP x < … < iP x m and iE x >
2
m

.

Notice that (23) and (33) recover the binary logit choice probabilities when m = 1: 

0iP x = /

1
1 iae

1iP x =
/

/1

i

i

a

a

e
e

.

(e.g., see (9)). Furthermore, if n = 1 and m > 1, so that an individual selects a quantity (possibly zero) up 

to m of a single alternative, then the probability distribution of random choice xx is fully specified by (23)

and (33):

0P x =
1

1
1 mA

1P x = 1

1

0
1 1

mA P x
m A

m}

{1, …,, mm}.}.

selected is proposelected is pr

asing in g in xx or dec

== na11
11 mm

for f

andand EE <
m

nd (333)) recov
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2P x = 1

1

1
1

1 2
m A

P x
m A

1P x m = 1

1

2 2
1

A P x m
A

P x m = 1 1A P x m

Finally, observe that (31) in Theorem 1 hints at a rather remarkable result on the character of the 

probability function of conditional Gumbel order statistics, which I state below as a theorem. The theorem

illuminates a simple structure underlying the probability distribution of the difference between Gumbel 

order statistics.

Theorem 2. Let 0 1, ,..., mz z z0 1,...,1 mz z z0 1,...,1 be independent Gumbel random variables with the same scale parameter 

and location parameter i with i = for i ≥ 1. Let :x mzz denote the xth largest value in m-dimensional 

random vector 1,..., mz z . Define :x myy = :
0

x mz z0z z0 for x ∈ {1, …, m} and let 1: | :x m x myy denote a 

conditional random variable with probability distribution 1: | :x m x mP y tyyy = 1: :|x m x mP y t y ty ty t y t|y t y tt yt y|t yt y| for 

x {1, …, m – 1}. Then 1: | :x m x myy is a logistic random variable with mean 0 – (m-x) where (m-x) = [ +

ln(m – x)] is the location parameter of 1:m xz , variance 2 2 / 3 , and cdf

1: | :x m x mP y tyyy = 1:m xP y t = 1:
0

m xP z z tt0z z t0z z t0 zz =
0 /

1

1
m xt

e
. (35)

Theorem 2 generalizes Lemma 2 to non-extreme, but conditional, order statistics. For example, at x =

0, then 0:myy doesn’t exist, and (35) becomes  

1:
0

mP z z tt0z z t0z z t0 zzz =
0 /

1

1
mt

e
,

which is the result in Lemma 2. While :x mzz is not a Gumbel random variable when x > 1, it retains the 

Gumbel character when appropriately conditioned on the next largest order statistic. The effect of 

conditioning is akin to the creation of an unconditional Gumbel obtained from the maximum of a smaller 

set of iid Gumbels. This special structure is key to the relatively simple and recursive expressions that 

appear in Theorem 1. A manifestation of this special structure inherent to Gumbel random variables 

appears in Beggs et al. (1981). They show that the probability of an ordering of the largest k of n > k

independent Gumbel random variables is independent of the n – k smallest random variables. The next 

result builds on theorems 1 and 2 and presents the choice probability functions. 
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Theorem 3. The probability mass function of xx is

P x x =
1

1

1

1

1

0 01

1

1

1

n

i
i

n

n

jn
xxn

n
n

j ji i
i i i

i

xx
m jj
x m x j A

nnxnn

jjj1j1 , x {0, …, m}n
. (36)

or in vector notation,

P x x = 2 2
1

m
T

i i

m
C

x
x xTC (37)

where I( ) is an indicator function returning 1 if condition holds and

C xC = 1

1 0,...,

1
n

i
i

n

n
ji

i i
i i m

x
I j x

j
j

x =

1 0,...,

1

1
n

n

i i i
i m

m x j A
j

.

The single-choice and null-choice probabilities exhibit a particularly simple structure. For x =

,0,...,0x with x {1, …, m}, I apply the identity in Lemma 5, and (36) simplifies to

,0,...,0P xx =
1

1

0
1 1

2 2

1

1 1

x

n n
j

i i
i i

m j A

m A m x A m A m j A
, (38)

which follows the marginal probability structure in (33). If x = 0, then (36) simplifies to

P x 0 =

1

1

1
n

i
i

m A
, (39)

which recovers the MNL null-choice probability.

7. Parameter Estimation

Without loss of generality, the scale parameter is normalized to = 1, e.g., Ai = /iae /a = iae .4 Estimation of 

parameters of the OS-G model will rely on an estimate of m, which represents an upper limit on the 

number of units selected of an alternative. The selection of this value may be informed by some 

4 Parameter ai can be interpreted as the nominal marginal utility of alternative i, which may be modeled as a linear 
combination of alternative i attributes/characteristics ia = 1,...,i iMa a and a vector = ( 1, …, M) that reflects 

characteristics of the population e.g., ai = T
iα a .

abilities exhibitabilities e

y the identity inhe identit

na111111

11
nn

11 m11
i

A

inal probaal p
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combination of judgement, observed choice quantities in the data, and computational considerations, e.g., 

the complexity of probability expressions increases in m.

For a given value of m, one may estimate vector A = (A1, …, An) by maximizing the log-likelihood 

function (i.e., MLE) of observations x1, …, xN:

Â =
1

arg max ln |
N

k

k

P
Y

x x A Y|||k ||k |k |k |k | =
1 1

arg max ln |
mN Tk k

k
k i i

m
C

xY
x x Y

T
C

where

|kx Y =

1 0,...,

1

1
n

n
k
i i i

i m

m x j Y
j

.

An alternative estimation method that provides less theoretical precision (because it ignores some 

information) but is computationally more efficient is MLE using the marginal probability functions

instead of the joint probability functions:

Â =
1 1

arg max ln |
n N

k
i i i i

i k

P x x A Y
Y

|k A|k A|k A|k
i i i|i i i|x x A|k
i i ii i|x A|i i i| =

1 1
arg max ln |

n N
k

i i i i
i k

P x x A Y
Y

|k A| i| i| A| ii| A|

=
1

1 1 0

1arg max ln
11

k
ixn N

i
k

i k j ii i

m j Y
m j Ym x YY

=
1

1 1 0

1arg max ln ln
11

k
ixn N

i
k

i k j ii i

m j Y
m j Ym x YY

.

With this approach, the parameter for each alternative can be estimated independently, i.e., for i = 1, …, 

n,

ˆ
iA =

1

1 0

1arg max ln ln
11

k
i

i

xN
i

k
Y k j ii i

m j Y
m j Ym x Y

.

I run a small numerical experiment to provide a sense of how the two methods compare in terms of 

accuracy. I randomly generate individual choices according to the OS-G model with m = 3, n = 3, and 

true parameters A1 = 7 e2 A2 = 1 = e0, A3 = 0.13 e-2, and a0 = = 0. I set the sample size to N = 1,000 

and run 30 replications. Table 1 compares the mean absolute percentage error (MAPE) of MLE parameter 

estimates ˆ
iA for the two methods. The results illustrate the decrease in precision from ignoring correlation 

in quantity choices of individuals in a population. In this example, the reduction in accuracy of parameter 

estimates is relatively small.
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Sample Size = 1000 Choices
Method 1 Method 2

True
Value

Mean MLE
Estimate MAPE (Std Err)

Mean MLE
Estimate MAPE (Std Err)

A1 7.00 6.942 5.21% (0.61%) 6.874 6.11% (0.69%)
A2 1.00 1.004 4.21% (0.61%) 1.004 4.23% (0.61%)
A3 0.13 0.132 5.25% (0.70%) 0.132 5.21% (0.70%)

Table 1. Mean parameter estimate and mean absolute percentage error over 30 replications with sample 
size N = 1,000 using the probability mass function (Method 1) and the marginal probability function 
(Method 2). Standard errors are in parentheses.

8. Normative Analysis
Recall that B is the average number of units selected during a choice event by individuals in the 

population, which may be estimated from observed choices. The value of B plays a role when measuring 

how choice probabilities change as features of alternatives change. If the value of B remains stable (or can 

be predicted) as changes in alternatives are introduced, then the effects of changes in alternatives on 

choice probabilities can be measured (e.g., in a manner similar to Section 3.2). I illustrate this relationship 

for the OS-G model below, after presenting Theorem 4 on optimal thresholds for the general OS model.

Following Gallego and Wang (2020), it is straightforward to show that the solution to the threshold 

optimization problem with marginal utilities as order statistics of iid error terms is a scalar. 

Theorem 4. OS model: 0u0u = 0 0a 0 and i iu x = ix
i ia i where 00 , ijij are iid continuous random 

variables. For the OS model, the solution to the threshold optimization problem 

0 0 0 0
1 1 1 1

max | :
n m n m

i i i i i i i
i x i x

E u x u u x u P u x u P u x u B
λ 0

BB0i iu x uu x u0i iiiPPP 0i i0i i0 0i i iu x u u x u P u x uu P u x0 i iii iiPPPPPPPPP :0i i0i i0 i0 i

is the unique solution to 

0
1 1

n m

i
i x

P u x u0i 0iu ui = B (40)

if a solution exists; otherwise = 0.

Assume that 00 , ijij are iid normalized Gumbel random variables (OS-G model). As in Section 3.2, let 

ia = 1,...,i iMa a denote the vector of predictors for alternative i, let = ( 1, …, M) denote the utility 

coefficient vector estimated from the data (e.g., T
iα a is an estimate of ai), and let il denote a change in 

attribute l of alternative i. Prior to the change in the attribute, 

jP x xjjx xj =
1

0 1

T
j

T
j

x

k

m k e

m k e

α a

α a
, j = 1, …., n, x = 1, …, m

(see (21) and (30)), and after the change in attribute l of alternative i to ,il ila
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jP x xjjx xj =
1

0

T
j l il

T
j l il

I j ix

I j i
k

m k e

e m k e

α a

α a

where is the solution to

1

1 1 0

T
j l il

T
j l il

I j ixn m

I j i
j x k

m k e

e m k e

α a

α a
= B. (41)

The value of can be efficiently obtained via bisection search because the left-hand side of (41) is

decreasing in .

9. Summary and Reflection
This paper presents a model of discrete quantity decisions over a set of alternatives that is consistent with 

random utility maximization. The model employs order statistics of Gumbel random variables to capture 

individuals’ idiosyncratic and diminishing marginal utility to consumption. The underlying mathematical 

structure admits closed-form marginal quantity-choice probability functions and closed-form joint 

probability functions. 

An important question is whether, or under what settings, the model may capture the essence of real-

world behavior . . . whether the model can provide useful predictions or expose new insights for guiding 

decisions in public- or private-sector settings. I suspect that the range of meaningful application is narrow, 

and one reason stems from a property of the probability distribution of Gumbel order statistics identified 

in Theorem 1. One manifestation of this property is the probability mass function of quantity choice of 

each alternative is monotonic (see Corollary 3); as Ai increases from 0, the distribution of mass shifts 

from an extreme right skew (all mass at 0) to uniform at Ai = 1, to extreme left skew with all mass at m as

Ai approaches infinity. The model restricts the mode of the quantity-choice distribution to be the extreme 

left, the extreme right, or the entire sample space (in the case of Ai = 1), a property that may not fit with 

reality in some settings. This limitation is illustrated in Figure 1 that shows how the expected value of 

marginal utility changes in quantity. The form of the curves that are initially convex decreasing and later 

concave decreasing may align with behavior in some settings but not in others.

Interestingly, the monotonic feature of the probability distribution is characteristic of a power-law

relation where probability is scale-invariant and proportional to x-k. For example, the continuous analog of 

the probability distribution in Theorem 1 has density proportional to (1 + m – x)k where k > (<) 0 if Ai <

(>) 1 (see the appendix). A wide variety of phenomena (physical, biological, man-made) exhibit power-

law relations. 

An additional potential weakness of the model is the form of the constraint in an individual’s choice 

optimization problem – an individual maximizes expected utility for a given average purchase quantity at

each choice event. A key advantage is that, under this constraint, an individual’s optimization problem at
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each choice event is simple: choose alternatives with the highest utility that exceed a given threshold. An

alternative formulation is to maximize expected utility for a given average spend amount at each choice 

event. This formulation translates to a more complex (i.e., combinatorial) decision problem for an 

individual, e.g., a simple rule of choosing alternatives with the highest utility per dollar that exceed a 

given threshold is not necessarily optimal. Consideration of this, or other, alternative formulations is one 

avenue for future research.

In sum, the main value of this paper is perhaps less in the OS-G model of multiple discrete choice—

for which application may be narrow—and more in lemmas 3 – 6, theorems 1 – 3, and corollaries 2 – 3. 

These lemmas, theorems, and corollaries present probability distribution functions and properties related 

to the difference of a pair of Gumbel order statistics. Order statistics arise in a variety of real-world 

phenomena that extend beyond choice decisions. Thus, the results presented in Section 6 have potential to 

spur new applications and research on order-statistic-based models.
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11. Appendix
11.1. Proofs

Proof of Corollary 2. To simplify notation, f t =
0uf t , F t =

0uF t
0uu , if t =

i ijaf t
ijij

, and iF t =

i ijaF t
ij

. From (15) and (16),

F t =
/tee f t =

/
/

t
t

ee e

iF t =
/t

iA ee if t =
/

/
t

i

t
A eiAe e

and from (15) – (20),

iu xf t
iuiui

=
/ /

/ 11! 1
1 ! !

t t
i i

t xm x A e A eiAem e e
x m x

iu xF t
iui

=
/ /

1

0
1

t t
i i

x jm j A e A e

j

m
e e

j

1 ,...,,i iu u xf t
iuiui

=
1

!
!

x
m x

x j
j

m F t f t
m x

=
1/ //1

//!
!

xt ttk x
i i i

ttm x
A e A e A ei iAe Aem e e e

m x

=
/ /

1
1

//!
!

x
t tj x

i x
j

A e m x e tt
i iAe Aem e

m x
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=
/ /

11
/

xx t tj x
ij

jj

x A e m x et
im Ax e e

x
. �

Proof of Lemma 3. Recall that 0u0u is Gumbel with scale and location 0. It follows from Lemma 1 that 

1iuiu is an independent Gumbel with scale and location ai + lnm. Therefore, from Lemma 2, it 

follows that 1
0 iu u0 iu u0 is a logistic random variable with mean –(ai + lnm), and thus,

1iP x = 01iP u u0i 0iu ui = 0 1 0iP u u 00 i0 0iu u0 =
0 0 ln /

1
1 ia me

=
ln /

1
1 ia me

=
/

/1

i

i

a

a

me
me

=
1

i

i

mA
mA

0iP x =1 1iP x = 1
1 imA

. �

Proof of Lemma 4. To simplify notation, let i xuiu = 1 ,...,i iu u xu . Then 

A = 1i iP u x t u xiiui =
11

1 1 1 11... ,..., ...
x

i

tt t

x xx
t t t

f t t dt dtu

=

11 / /111
11

1 /

1 1
!... ...

1 !

xx t tj xx ij
jj

xtt t A e m x et
i

x
t t t

Am e e dt dt
m x

=
/

11 1 /11 1

//

1 1
! ... ...

1 !

x x
t jx xj i txj j i

xtt t tt A e
A m x ei i

x x
t t t

A A em e e e dt dt dt
m x

Let = 1 /xt
iAe . Then d =

1 /xt
iAe dt , tx+1 = – = – , tx+1 = t = /t

iAe , and

A =
//

11
1 1

/

1
! ... ...

1 !

x x tt jx ij i
j j

xt A et t A e
m xi

x
t t t

Am e e e d dt dt
m x

=
/ /

11
1 1

/

1
! ... ...

1 !

x x
t tjx ij i

j j

xtt m x A et A e
i

x
t t t

Am ee e dt dt
m x m x

=
//

11
1 1

/

1
! ... ...

!

x x
tt jxi j i

j j

xttm x A e t A e
i

x
t t t

Am e e e dt dt
m x

=

1 1
//

2 11
/

1 1

1 /
/

1 1
! ... ...

!

x x
tt jx xi j i txj j x i

xt ttm x A e t A e
t A ei i

x x
t t t t

A Am e e e e e dt dt dt
m x
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2

tx
i

x x
tt jxi j i

j j

t
itt x

i i

A e

xttm x A e t A e
i

xA e
t t t A e A e

e
Am e e e dt dt

m x ee e

=

2 2
//

31
/ /21 1

2 / 2

2 1
! 1... ...

! 2

x x
tt jxi j i t txj j i i

xttm x A e t A e
A e A ei

x
t t t

Am e e e e e dt dt
m x

=

2

3 3
//

4 31
1 1

/2
/2

/

/

3 /

2 2 3 1
! ... ...
2 !

x

x x
tt jx xi j i

j j
tx

i
tx

i
t

i

t
i

xt ttm x A e t A e
i

x xA e
t t t t A e

A e

A e

Am e e e dt dt dt
m x e

e
e

=

3 3 /// 3
41

/
1 1

/

3 / 2

3 1
! ... ...
2 !

x x ttt xjx ii j i t
j j i

t
i

xt A etm x A e t A e
A ei

x
t t t A e

Am e e e e e e d dt dt
m x

=

/3
3 3 /

//
41

1 1

/

3
3 /

3 1
! ... ...
2 ! 3

tx
ix x t

tt j ixi j i
j j

t
i

A e
A exttm x A e t A e

i
x

t t t
A e

e eAm e e e dt dt
m x
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=

/3 3 /3//
41

1 1

3
3 /

3 1
! ... ...
2 ! 3

tx x txtt j i ixi j i
j j

A e A exttm x A e t A e
i

x
t t t

e eAm e e e dt dt
m x

=

4 4 /// 4
51

/
1 1

/

4 / 3

4 1
! ... ...
3! !

x x ttt xjx ii j i t
j j i

t
i

xt A etm x A e t A e
A ei

x
t t t A e

Am e e e e e e d dt dt
m x

=

/4
4 4 /

//
51

1 1

/

4
4 /

4 1
! ... ...
3! ! 4

tx
ix x t

tt j ixi j i
j j

t
i

A e
A exttm x A e t A e

i
x

t t t
A e

e eAm e e e dt dt
m x

=

4 4
//

51
/ /41 1

4 / 4

4 1
! ... ...
4! !

x x
tt jxi j i t txj j i i

xttm x A e t A e
A e A ei

x
t t t

Am e e e e e dt dt
m x

(repeating the pattern up to t1, e.g., x – 5 = 1, x – 4 = 2, 4 = x – 2)

=

2 2
//

1
/ /21 1

2 / 2

2 1
!

2 ! !

tt j
i j i t t

j j i i

tm x A e t A e x
A e A ei

t t

Am e e e e e dt dt
x m x

=
/

11 2/ / / /1 2 2
/ / 2

2 1
!

2 ! !

t
i t t t t

i i i i

tm x A e t t x
A e A e A e A ei i

t t

Ae Aem e e e e e dt dt
x m x

=
// 1

1 / /1

/

/ 2

1
!

2 ! !

tt
ii t t

i i

t
i

A em x A e t x
A e A ei

t A e

Aem e e e e e d dt
x m x

=

/1
/

/
1 /1

/

1
/

1
!

2 ! ! 1

t
i

t
t i

i t
i

t
i

A ex
A em x A e t

A ei

t
A e

e eA em e e dt
x m x x

=
/

1 / / /1 1
/ 1

1
!

1 ! !

t
i t t t

i i i

m x A e t x
A e A e A ei

t

Aem e e e e dt
x m x

=
/

/

/

0 1!
1 ! !

t
i t

i

t
i

m x A e x
A e

A e

m e e e e d
x m x

=

/
/

/

0

!
1 ! !

t
t i

i

t
i

x
A em x A e

A e

e em e
x m x x

=
/

/ / /! 1
! !

t
i t t t

i i i

m x A e x x
A e A e A em e e e e

x m x

/ 44

4

tA e
xe dtdtiA ei
x

= 1, xx –– 4 = 2, 4 4 = 2

//2tA e A ee ee22
iA ei A22A ee ee ee ee

2
AAeAe 2 /221111111111
Aiieeiii e AAAeAeiii e
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=
/ /

1
t t

i i
xm x A e A em

e e
x

,

which is (24). Note that 

1iP u tiiu ti = 1 11i

t

uf t dt
iuiu =

1 /1
/

1

t
i

t t
mA eimA e e dt

=
/1t

i
t

mA ee =
/t

imA ee

iP u m tiiu m ti = 1 1iu m
t

f t dt
iuiui

=
1 / /1 1

/ 1

11
t t

i i

t m
A e A ei

t

mAe e e dt

=
/11

t
i

m
A e

t

e =
/

1
t

i
m

A ee

and it is apparent that (24) includes (25) and (26) as special cases. Finally, 

1iP u tiiu ti =1 1iP u tiiu ti =
/

1
t

imA ee . �

Proof of Lemma 5. It is clear that (28) holds at x = m. I evaluate over increasing values of x to establish 

the pattern that generalizes to (28). Let g(x) be the LHS of (28) and h(x) be the RHS of (28). Then for 

increasing values of x < m,

g(0) =
mb

a mb
= h(0)

g(1) =
1 11

1
m m b

a m b a mb
=

1
1

m b mb
a m b a mb

= h(1)

g(2) =
! 1 2 1

2 3 ! 2 1
m b
m a m b a m b a mb

= ! 1 1 1 1
2 3 ! 2 1 1

m b
m a m b a m b a m b a mb

= !
2 3 ! 2 1 1

m b b b
m a m b a m b a m b a mb

=
2! 2

2 3 ! 2 1
m b b
m a m b a m b a mb

=
2 1

12
m b m b mb

a m b a mba m b
= h(2)
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g(3) =
! 1 3 3 1

3! 4 ! 3 2 1
m b
m a m b a m b a m b a mb

=

1 1
3 2!

3! 4 ! 1 1 1 12
2 1 1

a m b a m bm b
m

a m b a m b a m b a mb

=
2

1 1
3 2 2 1!

3! 4 ! 1 1
2 1 1

a m b a m b a m b a m bm b
m

a m b a m b a m b a mb

=
2

2
3 2 1!

23! 4 !
2 1

b
a m b a m b a m bm b

bm
a m b a m b a mb

=
3! 3

3 4 ! 3 2 1
m b b
m a m b a m b a m b a mb

=
3 2 1

3 2 1
m b m b m b mb

a m b a m b a m b a mb
= h(3)

continuing the pattern …

g(m – 1) =
12

2 1
m bb b mb

a b a b a m b a mb
= h(m – 1). �

Proof of Lemma 6. Recall that iu xiui = x
i ia i , and thus 

iE u xiiui = x
i ia E ii

where x
ii is the xth largest value among m independent Gumbel random variables with location parameter 

= 0 and scale parameter . From Lemma 1, it follows that  1
iE ii = ln m , and thus, 

1iE uiiu = lnia m . (A1)
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Suppose x > 1. For b > 0, let = /tbe , and note that d =
/tbe dt , t = ln b , t = - = , t

= = 0. Therefore,

/
/

t
t

betbe e dt =
0

ln b e d =
0

ln b e d =
0

ln lnb e d

=
0

0

ln lne b e d = lnb . (see (17))

Note that x
i

f t
i

fffff =
/ /

/ 11 1
t t

t xm x e em ex e e
x

(see Corollary 2). Therefore, for x = 2, …, m,

x
iE ii = x

i
tf t dt

i
fffff t d =

/ /
/ 11 1

t t
t xm x e em tex e e dt

x
.

Applying the binomial expansion, 1
xye =

0
1

x
j jy

j

x
e

j
, x = 0, 1, 2, 3, …,

x
iE ii =

/ /
/ 1

1

0

1
1

t t
t x

jm x e je

j

m xtex e e dt
x j

=
/

/1
1

0

1
1

t
tx

jm x j e

j

m x tex e dt
x j

=
/

/1
1

0

1 1
1

1
t

tx
jm x j e

j

m x t m x j ex e dt
x jm x j

=
1

0

1 ln 1
1

1

x
j

j

m x m x j
x

x j m x j
.

Thus 

iE u xiiui =
1

0

1 ln 1
1

1

x
j

i
j

m x m x j
a x

x j m x j
,

which, as a consistency check, reduces to (A1) when x = 1. �

Proof of Theorem 1. From Corollary 2,

A = iP x x = 0 0iP u x u 00i 0 0iu x ui = 0 iu xP u t f t dt
iuiui

f uff u

=
/ //

/ 11! 1
1 ! !

t tt
i i

t xm x A e A ee iAem e e e dt
x m x

.

Applying the binomial expansion, 1
xye =

0
1

x
j jy

j

x
e

j
, x = 0, 1, 2, 3, …, 

1
dtdt ..

jye , xx = 0, 1, 2,= 0, 1,

/tjj jejee je1
jjjj

a
/teee

rn11
x

11 jj11
11x

11 jj

11 11xm xm x11x

jx j00jx j
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A =
/ /

/ 1
1 1

0

1! 1
1 ! !

t t
i i

t x
jm x A e jA ei

j

xAem e e dt
jx m x

=
/

/1
1 1

0

1! 1
1 ! !

t
i

tx
j m x j A ei

j

xAem e dt
jx m x

.

Let = /te . Then d =
/te dt , t = – = – , t = = 0, and 

A =
01

1 1

0

1! 1
1 ! !

i
x

j m x j A
i

j

xm Ae d
jx m x

=
1

0

1
1 1

1 1 1

x
j i

j i

m x Am x
x j m x j A

and it follows from Lemma 5 that 

iP x x =
1

0

1
1 1

1 1 1

x
j i

j i

m x Am x
x j m x j A

=
1

0 1

x
i

j i

m j A
m j A

,

which is (30).

Note that 0iP x = 1. From Lemma 3, 

1iP x = 1| 0i iP x x =
1

i

i

mA
mA

.

Thus, for x {1, …, m – 1}, I rearrange

1iP x x = 1|i i iP x x x x P x x1|i ix x x x1|i xix x xx x1| i

and apply (30) to obtain

1|i iP x x x x1|i i|x x1|i i1|x xx x1| i1| =
1i

i

P x x
P x x

=
1

i

i

m x A
m x A

,

which is (31). Applying the above, 

|i iP x x x x|i i|x x x x|i i|x xx x| i| =1 1|i iP x x x x1| i| x x1| i1| x1| i1| = 1
1 im x A

,

which is (32). Finally, applying (30) and (32),

iP x x = |i i iP x x x x P x x|i i|x x x x|i i|x x xx x| i| =
1

0

1
1 1

x
i

ji i

m j A
m x A m j A

yields (33), or alternatively (as a consistency check), 
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iP x x = 1i iP x x P x x =
1

0 01 1

x x
i i

j ji i

m j A m j A
m j A m j A

=
1

0

1
1 1

x
i

ji i

m j A
m x A m j A

(which is (33))

=
2

0

11
1 1 1 1

x
i i

ji i i

m x A m j A
m x A m x A m j A

=
2

0

1 1
1 1 1 1

x
i i

ji i i

m x A m j A
m x A m x A m j A

=
1

1
1

i
i

i

m x A
P x x

m x A
,

which is (34).  �

Proof of Corollary 3. The relationship among probabilities follows directly from (34) and observation 

that 

1
i i

i

A m x A
m x A

1,  1
1,  1
1,  1

i

i

i

A
A
A

.

If Ai = 1, then 

iE x =
0

1
1

m

j
j

m
=

2
m ,

and iE x <
2
m for Ai < 1 and iE x >

2
m for Ai > 1 follow from the monotonicity of the probability mass 

function. �

Proof of Theorem 2. The proof relies on (31) in Theorem 1. To simplify notation, I suppress the 

subscript i, and (31) becomes

1|P x x x x1|x x x x1|x xx x1| = 1: :
0 0|x m x mP a a|||0 0 a0 0 a0 00|a =

/

/1

a

a

m x e
m x e

, x {1, …, m – 1}.

From Lemma 1, 1:k is a Gumbel random variable with scale parameter and location parameter =

ln k . From Lemma 2, zz = 1:
0

k
00 is a logistic random variable with cdf

zF zzFFFFF =
0 ln /

1
1 z ke

= / ln

1
1 z ke

=
/

/1

z

z

ke
ke

.

Therefore 
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1: :
0 0|x m x mP a a|||0 0 a0 0 a0 00|a = 1:

0
m xP aa0 a00 a0 . (1)

We interpret (1) terms of 0 1, ,..., mz z z0 1,...,1 mz z z0 1,...,1 given in the theorem, which can be rewritten as 0z0z = 0 00 and iziz =

ii where ii are iid Gumbel random variables with location 0 and scale . Furthermore, 1:m xzz =

1:m x with location parameter (m-x) = + ln(m – x) (see Lemma 1). Let a = (m-x) + t – 0.

Substituting into (1),
1: :

0 0 0 0|x m m x x m m xP t t||t |t0 0 00 0 0t0 0 0t 0 0|t = 1: :
0 0|x m x mP z z t z z t| t|t |0 0z z t z z t0 0z z t z z t0 z0z t z zz t z z0|

1:
0 0

m xP t0000 = 1:
0

m xP z z tt0z z t0z z t0 zzz =
0

0

/

/1

t

t

m x e
m x e

=
0

0

ln /

ln /1

m x t

m x t

e
e

=
0 /

1

1
m xt

e

Therefore, 1: | :x m x myy is a logistic random variable with mean 0 – (m-x) and variance 2 2 / 3 . �

Proof of Theorem 3. From Corollary 2 and Lemma 4,

A = P x x =
0

1

1
n

u i i i i
i

f t P u x t u x dt
0u0u dt

=
/ //

/

1

1
t itt

i i i

t n xm x A e A ee

i i

me e e e dt
x

=
/

/
1

/ 1

1 1

1

n
t

i i it
i i

t m x A en n x
A e

i ii

m e e e dt
x

.

Applying the binomial expansion, 

1
xye =

0
1

x
j jy

j

x
e

j
, x = 0, 1, 2, 3, …,

A =
/ /

1
1 1

1

1

/ 1
1

0 01 1

1

n n
t tn

ni i i i
ii i

i

n

xxt m x A e j A en
jn

j ji i kn

m xxe e e dt
x jj

nxnx11x1111 n1

j

=
/ /

1
1 1

1

1

/ 1
1

0 01 1

1

n n
t tn

n i i i i
i i i

i

n

xx t m x A e j A en
jn

j ji i n

m xx e e e dt
x jj

nx11x11 nn11
i

j

=
/

1
1

1

1

/ 1
1

0 01 1

1

n
tn

n i i i
i i

i

n

xx t m x j A en
jn

j ji i n

m xx e e dt
x jj

nx11x11 nn11
i

j
.
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Let = /te . Then d =
/te dt , t = – = – , t = = 0, and 

A = P x x =
1

1
1

1

0 1
1

0 01 1

1

n
n

k i i i
i i

i

n

xx m x j An
jn

j ji i n

m xx
e d

x jj
nx11x11 nn11

i
j

=
1

1

1

1

1

0 01

1

1

1

n

i
i

n

n

jn
xxn

n
n

j ji i
i i i

i

xx
m jj
x m x j A

nnxnn

jjj1j .

As a consistency check, recall that 0u0u , 1 1 ,..., 1nu u1u1u1 are independent Gumbel random variables 

with scale and location parameters 0 and ai + lnm for i = 1, …, n. Thus, it follows from lemmas 1 and 

2 that

P x 0 = 0 max 1i iP u u0 iu0 a iu0 maxmax =
1

0 ln 0 /

1

1

n

i
i

a m

e

=

1

1

1
n

i
i

m A
,

which aligns with the general expression above. �

Proof of Theorem 4. Let denote a threshold vector. The Lagrangian of the optimization problem is 

,L τ = 0 0 0
1 1

|
n m

i i i i i
i x

B E u x u u x u P u x u0i i0 i0 0i i iP u x uxiu x u u x uu0 ii P .

Let fi(t |x) denote the probability density function of 0iu x u0iu x uiu xi . Then 

,

i

L τ
=

1
|

i

m

i
xi

t f t x dt =
1

|
m

i i i
x

f x

2

2

,

i

L τ
=

1

|
|

m
i i

i i i
x i

f x
f x

2 ,

i j

L τ
= 0, i ≠ j

The first-order condition (necessary condition for interior optimal) is 

i = for all i

and at this point, 
2

2

,

i

L λ
< 0, 

Jo
urn

al 
Pre-

pro
of

ndent Gumt Gu

n. Thus, it folloThus, it fo

p/0000
1i 1i

==p
ve. ��

shold vector.ld vector Th

iuiiui

bility density funy density

J11
ii

mm



30

which implies that i = = is a unique global maximum. If 0
1 1

0
n m

i
i x

P u x u 00i 0 0iu x ui < B, then the 

constraint is nonbinding and = = 0. Otherwise is the unique solution to (40). �

11.2. Hard Constraint versus Soft Constraint
Estimation of MDCEV (via (4)) and the models in sections 3.2 and 3.3 include an assumption on how 

individuals operationalize choice decisions. I describe the assumption in this section and compare it to an 

alternative assumption. 

At each choice event, an individual makes decisions to maximize utility. There are at least two ways 

in which this may be operationalized. The following two formulations show optimal expected utility from 

a future choice event.

P1: U1
* =

1 1
max :

n n

i i i
i i

E u x x B
x i i :u x ::i ii i (hard constraint)

P2: U2
* =

0 1 1

ˆ ˆmax , : ,
n n

i i i
i i

E u x u E x u Buiuiuii BEE ˆ̂̂::: (soft constraint)

where for realization iu of random utility function iu

ˆ , ix u = max : ix
x u x .

Note that ˆ , ix u is the decision rule given in (2). For a given realization of utility functions, the 

decision the rule yields the quantity decisions x that maximize total utility subject to an upper limit on 

consumption that is determined by the dual value . The optimal value of is set to maximize expected 

utility subject to an upper limit on expected consumption (B).

Under P1, the decision maker chooses x that maximizes utility subject to the constraint for each 

realization of utility functions. P1 enforces the constraint at each choice event, i.e., the inequality is 

treated as a hard constraint.

Under P2, the decision maker chooses x according to the threshold decision rule; the decision maker 

identifies alternatives with marginal utility above the threshold at the origin, and then increases quantity 

until marginal utility matches the threshold. The threshold is set to maximize expected utility while 

satisfying the constraint in expectation, i.e., the inequality is treated as a soft constraint. That is, the 

decision maker identifies the threshold that maximizes expected utility while assuring that the constraint 

is satisfied “on average” (e.g., tuned heuristically from experience over time). As shown in the Section

2.2, MDCEV is based on P2, as are the models in sections 3.2 and 3.3.

Intuition may suggest that P2 results in higher expected utility than P1, i.e., U2
* ≥ U1

*.  This intuition 

is correct. The reason is that, at the optimal threshold under P2, the decision maker selects more than B
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units when realized choice utilities are high, which is offset (in expectation) by selecting fewer than B

units when realized choice utilities are low.5 It may be that P2 is more aligned with human nature as well, 

e.g., tend to choose more than B when highly desirable to do so.

In summary, in the context of discrete quantity choice, P2 has appealing characteristics relative to P1 

across several dimensions: individual decision-making, empirical analysis, and normative analysis. From 

the perspective of an individual’s choice decision, P2 results in higher average utility for an individual 

while being practical to operationalize. Choice probabilities have a simple form that is amenable to 

efficient estimation under alternative assumptions for probability distributions of idiosyncratic error terms 

(e.g., probit, logit). And while perhaps not apparent from the choice probability expression, the model 

captures the interaction of alternatives through the threshold parameter. Normative analysis based on the 

model is relatively tractable. Lastly, it is important to note that the entire class of generalized extreme 

value models (McFadden 1978) is a special case of the model given in P2 with B = 1, i.e., P2 is consistent 

with GEV models. This result is proved in Gallego and Wang (2020, Theorem 3). 

11.3. Continuous Analog of the Discrete Distribution in Theorem 1.6

Define g(x) = P x x , x = 0, …, m. From Theorem 1 (with the subscript for alternative i suppressed), 

g(0) = 1
1 mA

g(x) = 1 1
1/

m x g x
A m x

, x = 1, …, m.

Thus,

g x
g x

=
1g x g x

g x
=

1 1/
1

m x A m x
m x

= 1 1/
1

A
m x

.

The continuous analog, h(x), satisfies 

'h x
h x

= 1 1/
1

A
m x

.

For A 1, the solution to the differential equation is

h(x) = 1/ 11 Ac m x

5 To briefly formalize this point, suppose that the conclusion is not true. Consider a pair of realizations, one for 
which the optimal threshold under P1 is low (with threshold L) and the other for which the optimal threshold is high 
(with threshold H > L). The constraint is satisfied at equality for both realizations under P1. Then there exists a 
threshold between L and H for which the constraint is satisfied in expectation with respect to these two 
realizations and with higher expected utility, which leads to a contradiction. See Gallego and Wang (2020; Theorem 
2) for a detailed proof for the case of discrete quantity decisions.
6 This continuous analog was identified by Harish Guda, W. P. Carey School of Business, Arizona State University. 
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