Properties of 3×3 Magic Squares Scott Webster Syracuse University July 1997 Consider the following magic squares¹ with lines connecting the values in ascending order. | 4 9 2 | 4 9 8 | 8 19 18 | |-------------------------|---------------------------|--------------------------------| | 4 9 2
3 5 7
8 1 6 | 4 9 8
11 7 3
6 5 10 | 8 19 18
25 15 5
12 11 22 | | 8 1 6 | 6 5 10 | 12 11 22 | A curious pattern appears, which raises the question of whether the same polygonal pattern appears in all magic squares.² The following magic square tells us that the answer to this question is no. In fact, there are only 2 possible patterns. In order to verify this claim, we define requisite notation, introduce several preliminary properties, and present the main result in Property 3. Let the 9 unique values of a 3×3 magic square be denoted as $a_1 < a_2 < ... < a_9$. The position values are denoted as x_{ij} , i.e., $$x_{11}$$ x_{12} x_{13} x_{21} x_{22} x_{23} x_{31} x_{32} x_{33} and $S = x_{11} + x_{12} + x_{13}$ denotes the *magic constant*. ¹ Nine unique positive numbers arranged in a square matrix such that all row sums, column sums, and diagonal sums are equal. ² This question was raised in the August 1997 issue of *Scientific American* (see p. 88). **Property 1.** $a_5 = x_{22} = S/3$. **Proof.**³ $$x_{11} + x_{21} + x_{31} = S \Rightarrow x_{21} + x_{31} = S - x_{11}$$ $$x_{11} + x_{22} + x_{33} = S \Rightarrow x_{22} + x_{33} = S - x_{11}$$ $$x_{13} + x_{23} + x_{33} = S \Rightarrow x_{23} + x_{33} = S - x_{13}$$ $$x_{13} + x_{22} + x_{31} = S \Rightarrow x_{22} + x_{31} = S - x_{13}$$ Therefore, $x_{21} + x_{31} = x_{22} + x_{33}$ and $x_{23} + x_{33} = x_{22} + x_{31}$. Adding these equations: $$x_{21} + x_{31} + x_{23} + x_{33} = 2x_{22} + x_{33} + x_{31}$$ or $x_{21} + x_{23} = 2x_{22}$. Adding x_{22} to each side of the equation gives, $$x_{21} + x_{22} + x_{23} = 3x_{22}$$. But $x_{21} + x_{22} + x_{23} = S$, which implies $x_{22} = S/3$. In order to show that $a_5 = x_{22}$, note that $x_{11} + x_{22} + x_{33} = S$ and $x_{22} = S/3$ implies that either $x_{11} < x_{22} < x_{33}$ or $x_{11} > x_{22} > x_{33}$. Similarly, $x_{13} < x_{22} < x_{31}$ or $x_{13} > x_{22} > x_{31}$, $x_{21} < x_{22} < x_{23}$ or $x_{21} > x_{22} > x_{23}$, and $x_{12} < x_{22} < x_{32}$ or $x_{12} > x_{22} > x_{32}$. Therefore, there are 4 values smaller than x_{22} and 4 values larger than x_{22} , which implies $a_5 = x_{22}$. \square **Property 2.** $a_1 + a_9 = a_2 + a_8 = a_3 + a_7 = a_4 + a_6 = 2a_5$. **Proof.** Due to Property 1, for any $i \in \{1,2,3,4,6,...,9\}$ there exists some $j \in \{1,2,3,4,6,...,9\}\setminus\{i\}$ such that $a_i + a_5 + a_j = S$. Consider i = 1 and suppose $j \neq 9$. Then $S = a_1 + a_5 + a_j \leq a_1 + a_5 + a_8 < a_1 + a_5 + a_9 < a_9 + a_5 + a_k$ for $k \neq 1$. But when i = 9, there exits some $k \in \{2,3,4,6,...,8\}$ such that $a_9 + a_5 + a_k = S$, which contradicts the possibility $j \neq 9$. Therefore, $a_1 + a_5 + a_9 = S = 3a_5$, or $a_1 + a_9 = 2a_5$. The same arguments can be applied for other values of i (i.e., consider i = 2 and suppose $j \notin \{8,9\}$, consider i = 3 and suppose $j \notin \{7,8,9\}$, etc.). \square **Corollary 1.** The values of a_1 , a_2 , a_3 , a_4 , a_6 , a_7 , a_8 , and a_9 are symmetric with respect to a_5 , i.e., $a_5 - a_1 = a_9 - a_5$, $a_5 - a_2 = a_8 - a_5$, $a_5 - a_3 = a_7 - a_5$, and $a_5 - a_4 = a_6 - a_5$. **Proof.** Follows directly from Property 2 (e.g., $a_1 + a_9 = 2a_5$ can be rewritten as $a_5 - a_1 = a_9 - a_5$). \square ³ Property 1 is a slight extension of the property $x_{22} = S/3$; the proof of $x_{22} = S/3$ appears in *The Moscow Puzzles* by B.A. Kordemsky (Dover Publications, 1992. p. 292). **Property 3.** A 3×3 magic square is 1 of 2 possible forms. | <u>Form 1:</u> | <u>Form 2:</u> | |-------------------|-------------------| | $a_7 \ a_1 \ a_8$ | $a_6 \ a_1 \ a_8$ | | $a_6 \ a_5 \ a_4$ | $a_7 \ a_5 \ a_3$ | | $a_2 \ a_9 \ a_3$ | $a_2 \ a_9 \ a_4$ | Specific magic squares can be composed according to the following rules. ### Form 1: - 1. Arbitrarily select values for Δ_1 and Δ_2 . - 2. Arbitrarily select a value for a_5 that satisfies $a_5 > 3\Delta_1 + 2\Delta_2$. - 3. Set the remaining values according to: $$a_6 = a_5 + \Delta_1,$$ $a_4 = a_5 - \Delta_1$ $a_7 = a_6 + \Delta_2,$ $a_3 = a_4 - \Delta_2$ $a_8 = a_7 + \Delta_1,$ $a_2 = a_3 - \Delta_1$ $a_9 = a_8 + \Delta_1 + \Delta_2,$ $a_1 = a_2 - (\Delta_1 + \Delta_2).$ Accordingly, form 1 can be rewritten as: $$a_5 + (\Delta_1 + \Delta_2)$$ $a_5 - (3\Delta_1 + 2\Delta_2)$ $a_5 + (2\Delta_1 + \Delta_2)$ $a_5 + \Delta_1$ $a_5 - (2\Delta_1 + \Delta_2)$ $a_5 - (\Delta_1 + \Delta_2)$ $a_5 - (\Delta_1 + \Delta_2)$ ## <u>Form 2:</u> - 1. Arbitrarily select values for Δ_1 and Δ_2 . - 2. Arbitrarily select a value for a_5 that satisfies $a_5 > 3\Delta_1 + \Delta_2$. - 3. Set the remaining values according to: $$a_6 = a_5 + \Delta_1,$$ $a_4 = a_5 - \Delta_1$ $a_7 = a_6 + \Delta_2,$ $a_3 = a_4 - \Delta_2$ $a_8 = a_7 + \Delta_1,$ $a_2 = a_3 - \Delta_1$ $a_9 = a_8 + \Delta_1,$ $a_1 = a_2 - \Delta_1.$ Accordingly, form 2 can be rewritten as: $$\begin{array}{lll} a_5 + \Delta_1 & a_5 - (3\Delta_1 + \Delta_2) & a_5 + (2\Delta_1 + \Delta_2) \\ a_5 + (\Delta_1 + \Delta_2) & a_5 & a_5 - (\Delta_1 + \Delta_2) \\ a_5 - (2\Delta_1 + \Delta_2) & a_5 + (3\Delta_1 + \Delta_2) & a_5 - \Delta_1 \end{array}$$ **Proof.** We may limit our consideration to the possibilities of $a_1 = x_{11}$ and $a_1 = x_{12}$ (cases 1 and 2 below). This is because the form of a magic square does not substantively change when it is transposed (i.e., columns become rows and rows become columns), columns 1 and 3 are interchanged, or rows 1 and 3 are interchanged. ### Case 1: $a_1 = x_{11}$ From Property 2, it follows that $a_9 = x_{33}$. This means that $x_{31} + x_{32} = x_{13} + x_{23} = a_1 + a_5$. But this implies that x_{31} , x_{32} , x_{13} , x_{23} all must be between a_1 and a_5 . This is impossible because there are only 3 such values. Hence $a_1 \neq x_{11}$, and a form corresponding to case 1 does not exist. ### Case 2: $a_1 = x_{12}$ From Property 2, it follows that $a_9 = x_{32}$. This means that $x_{31} + x_{33} = a_1 + a_5$, which implies that x_{31} and x_{33} are between a_1 and a_5 . As a form is invariant when columns are interchanged, we may assume without loss of generality that $x_{31} < x_{33}$. This leads to 3 possibilities that we consider in turn. ### Case 2a: $a_1 = x_{12}, x_{31} = a_3, x_{33} = a_4$ From Property 2, $x_{31} = a_3$ implies $x_{13} = a_7$, and $x_{33} = a_4$ implies $x_{11} = a_6$. Up to this point, the magic square appears as: $a_6 \ a_1 \ a_7$ a_5 $a_3 \ a_9 \ a_4$ From $a_6 + x_{21} + a_3 = a_7 + x_{23} + a_4$, it follows that $x_{21} = a_8$ and $x_{23} = a_2$. But $a_6 + a_8 + a_3 < a_7 + a_2 + a_4$. Hence, a form corresponding to case 2a does not exist. ## Case 2b: $a_1 = x_{12}, x_{31} = a_2, x_{33} = a_3$ From Property 2, $x_{31} = a_2$ implies $x_{13} = a_8$, and $x_{33} = a_3$ implies $x_{11} = a_7$. From $a_7 + x_{21} + a_2 = a_8 + x_{23} + a_3$, it follows that $x_{21} = a_6$ and $x_{23} = a_4$, and the magic square appears as: $a_7 \ a_1 \ a_8$ $a_6 \ a_5 \ a_4$ a_2 a_9 a_3 Note that $a_1 + a_7 + a_8 = a_2 + a_6 + a_7$ implies $$a_8 - a_6 = a_2 - a_1$$ and $a_1 + a_7 + a_8 = a_2 + a_3 + a_9$ implies $$(a_9 - a_8) + (a_2 - a_1) = (a_7 - a_3).$$ But from Corollary 1, it follows that $a_2 - a_1 = a_9 - a_8$ and $(a_7 - a_3) = 2(a_7 - a_5)$. Therefore, $$a_8 - a_6 = a_9 - a_8 = a_7 - a_5$$. Furthermore, a_8 - a_6 = a_7 - a_5 implies a_8 - a_7 = a_6 - a_5 . Letting Δ_1 = a_6 - a_5 and Δ_2 = a_7 - a_6 we find a_8 - a_7 = Δ_1 and a_9 - a_8 = Δ_1 + Δ_2 , which leads to the rules for composing a magic square that matches form 1. #### Case 2c: $a_1 = x_{12}$, $x_{31} = a_2$, $x_{33} = a_4$ From Property 2, $x_{31} = a_2$ implies $x_{13} = a_8$, and $x_{33} = a_4$ implies $x_{11} = a_6$. From $a_6 + x_{21} + a_2 = a_8 + x_{23} + a_4$, it follows that $x_{21} = a_7$ and $x_{23} = a_3$, and the magic square appears as: $a_6 \ a_1 \ a_8$ $a_7 \ a_5 \ a_3$ $a_2 \ a_9 \ a_4$ Note that $a_2 + a_4 + a_9 = a_3 + a_4 + a_8$ implies $$a_9 - a_8 = a_3 - a_2$$ and $a_1 + a_6 + a_8 = a_3 + a_4 + a_8$ implies $$a_6 - a_4 = a_3 - a_1$$. But from Corollary 1, it follows that a_3 - a_2 = a_8 - a_7 , a_6 - a_4 = $2(a_6$ - $a_5)$, and a_3 - a_1 = a_9 - a_7 . Therefore, $$a_9 - a_8 = a_8 - a_7$$ and $a_9 - a_7 = 2(a_6 - a_5)$. Furthermore, $a_9 - a_8 = a_8 - a_7$ implies $a_9 - a_7 = 2(a_9 - a_8) = 2(a_6 - a_5)$, or $a_9 - a_8 = a_6 - a_5$. Letting $\Delta_1 = a_6 - a_5$ and $\Delta_2 = a_7 - a_6$ we find $a_8 - a_7 = \Delta_1$ and $a_9 - a_8 = \Delta_1$, which leads to the rules for composing a magic square that matches form 2. \square Two Examples | Form 1: $\Delta_1 = 1$, $\Delta_2 = 2$. $a_5 = 10$ | Form 2: $\Delta_1 = 1$, $\Delta_2 = 2$. $a_5 = 6$ | |--|---| | 13 3 14 | 7 1 10 | | 11 10 9 | 9 6 3 | | 6 17 7 | 2 11 5 |