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Business analytics, in the main, focuses on improving decision making by leveraging data. Improvements 

are typically achieved through time compression (e.g., faster decisions via automation) and/or higher 

quality (e.g., decisions that lead to better performance via more effective use of data).  

 There is a long history and a wide literature on statistical methods for prediction. Similarly, much of 

the machine-learning literature has focused on supervised learning, i.e., predicting a value (or vector of 

values) as a function of observables (aka, predictors). For example, we might be interested in predicting 

the demands or demand probabilities of products. In this example, the observables (or predictors) may be 

data on product attributes (prices, inventories, design features, etc.), customers, competition, economy, 

weather, etc. 

 While the application of machine learning and statistical methods to large datasets for prediction (i.e., 

predictive analytics) is well established, methods to translate large datasets into prescriptions (i.e., 

prescriptive analytics) is emerging. Prescriptive analytics will likely become a very active area of 

analytics research and industry attention over the coming years.  

The purpose of this teaching note is to introduce a new framework for prescriptive analytics. A reader 

with a reasonable knowledge of predictive analytics methods and with a basic understanding of 

optimization models/methods should be in a position to design and implement methods for prescriptive 

analytics. The content in this teaching note draws heavily on Bertsimas and Kallus (2020). 

1. Preliminaries 

A decision is to be made at the beginning of a period. The decision affects a measure of performance in 

the period, and may affect a response in the period. The response also affects the measure of performance. 

In addition, at the time of the decision there may be data on a predictor (in addition to the decision), or 

covariates, that affect the response. For example:  

decision:  prices and replenishment order quantities of products the firm 

sells  

predictor (beyond decision): sales in previous periods, and indicator of whether the period is a 

weekday or weekend  

  response (unknown):   demand for each product in the period 

  performance measure:   profit in the period 
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In this example, product prices affect demand whereas replenish order quantities do not affect demand. 

We use the following notation for the above elements:  

  s = decision that affects the response, which may be a vector or empty, e.g., s = ( )1,...,
sns s , ns ≥ 0 

t = decision that doesn’t affect the response, which may be a vector or empty, e.g., t = ( )1,...,
tnt t , 

nt ≥ 0 

  z = (s, t) = decision  

  Z = set of possible decision values, e.g., the decision may be constrained 

  x = predictor, which may be a vector or empty, e.g., x = ( )1,...,
xnx x , nx ≥ 0  

  y = response, which may be a vector, e.g., y = ( )1,...,
yny y , ny ≥ 1  

  v(z, y) = performance measure that is a function of the decision and response  

We have historical data comprised of N observations that are denoted using a superscript, i.e., the set of 

observations is 

  SN = {(x1, y1, z1), …, (xN, yN, zN)}.  

From these data, the historical values of the performance measure can be generated from the function v, 

i.e., the historical performance measures are  

  {v(z1, y1), …, v(zN, yN)}. 

The predictor is needed when considering performance in the future (because that response has not yet 

been observed). However, there may be some applications for which there is no predictor. In such 

applications, the response depends only on the decision.  

 Finally, we illustrate the performance measure function in our example above, but with some 

elaboration on terms. Suppose there are n products, the inventory of product j is the replenishment 

quantity tj, and the replenishment cost per unit of product j is cj. Recall that sj is the price of product j in 

the example. Then the profit in period i (i.e., observation i) is 

  ( ),i iv z y = ( )( ), ,i i iv s t y = { }( )
1

min ,
n

i i i i
j j j j j

j
s t y c t

=

−∑ .  

In this example, the measure of performance is distinct from the response. In some settings, the response 

itself is the measure of performance (e.g., v(z, y) = y). 

2. Prescriptive Analytics Framework 

We wish to identify a mapping from the predictor to a prescription using the historical data SN. The 

objective is to identify a decision (i.e., prescription) that maximizes the measure of performance. This 

mapping is called a predictive prescription and is denoted ( )ˆ Nz x .  
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In order to help clarify the concept of a predictive prescription, we begin with the simple and 

(usually) unrealistic setting where we know the exact probability distribution of the response for any 

given z and x. For a given predictor x, an optimal mapping is the solution to the following problem: 

  ( )max |v
∈z Z

z x . 

where ( )|v z x = ( ), |E v  z y x . E[⋅] is the expectation operator that is present because y may be uncertain 

(but affected by the values of z and x). In other words, for any given x and z values, y may be a random 

variable, and ( )|v z x  is the expected (or average) value of the performance measure given predictor x 

and decision z.  

The optimal mapping, or predictive prescription, can be expressed as  

z*(x) ∈ ( )arg max |v
∈z Z

z x .                   (1) 

The above says that, for any given predictor x, z*(x) is given by any “argument” that maximizes the 

objective function ( )|v z x  subject to the constraint z ∈ Z. Note that while z*(x) is a predictive 

prescription (i.e., it maps a predictor into a prescription), the problem defined in (1) would not be 

described as prescriptive analytics. The reason is that there are no data, i.e., we are not translating a 

dataset into a prescription.  

2.1. Framework 

In most real-life settings, the response is uncertain and we don’t know the probability distribution of the 

response; we need to identify an effective predictive prescription from the data. The problem of finding a 

prescription from the data (i.e., prescriptive analytics problem) can be generically expressed as  

( )ˆmax |Nv
∈z Z

z x                       (2) 

where ( )ˆ |Nv z x = ( ) ( )
1

, , ,
N

i
N

i
w i v

=
∑ s x z y  is the objective function. The predictive prescription is 

 ( )ˆ Nz x ∈ ( )ˆarg max |v
∈z Z

z x . 

The term wN(s, x, i) represents the “weight” (or probability) of performance given decision s (recall that s 

is the subset of decision z that affects the response), predictor x, and observation i. The function wN(s, x, i) 

is estimated from historical data. Importantly, the function is estimated with the goal of minimizing 

prescription error, i.e., maximizing the quality of the prescription (Section 3 describes a way to measure 

prescription quality).  

2.2. Estimating wN 

There are many statistical and machine-learning methods that can be used to compute the function      

wN(s, x, i). Linear and logistic regression fall within the statistical category. In the following sections we 
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briefly illustrate how wN(s, x, i) can be computed using methods that fall within the machine-learning 

category. We do not go into the details of how the methods work (e.g., see James et al. 2015 for 

explanations).  

2.2.1. k-nearest-neighbor 

  ( )NN , ,k
Nw is x =

( ) ( )( ),  is the NN of ,i iI k

k

s x s x
 

where I(⋅) is an indicator function that returns a value of 1 if the condition is satisfied, and 0 otherwise. 

We see that the function includes parameter k, the value of which may be tuned using machine-learning 

methods. 

The above expression reflects the following idea: if the point (si, xi) is one of the k closest points to  

(s, x), then yi is likely to be reasonably close to the response at (s, x). For example, suppose there are N = 

1010 observations, k = 3, and for a particular point (s′, x′), the 3 “close” observations are number 15, 722, 

and 1.23 × 109. The objective function value at decision z′ = (s′, t′) and predictor x′ is  

 ( )NNˆ ' | 'k
Nv z x = ( ) ( ) ( )915 722 1.23 101 ', ', ',

3
v v v × + +
 

z y z y z y . 

2.2.2. Kernel methods 

( )K , ,Nw is x =
( ) ( )( )( )
( ) ( )( )( )

1

, , /

, , /

i i
N

N
j j

N
j

K h

K h
=

−

−∑

s x s x

s x s x
 

where K is a kernel function and hN is the bandwidth parameter, the value of which may depend on the 

number of observations, or more generally, dataset SN. The value of hN may be tuned using machine-

learning methods. Kernel functions can be used to measure the “size” or magnitude of a vector, and thus 

can be used identify observations that are “close” to a point (s, x). Here are a few examples of kernel 

functions that map a vector u = (u1, …, un) into a scalar: 

  K(u) = ( )1I ≤u      (uniform, aka, naïve) 

  K(u) = ( ) ( )21 1I− ≤u u     (Epanechnikov) 

  K(u) = ( ) ( )
331 1I− ≤u u     (tricubic) 

  K(u) =
2
2 /21

2
e

π
− u       (Gaussian) 

where u =
1/2

2

1

n

i
i

u
=

 
 
 
∑ . As an example, consider the uniform kernel function applied to the prescriptive 

analytics problem: 
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  ( ) ( )( )( ), , /i i
NK h−s x s x = ( ) ( )( )( ), , / 1i i

NI h− ≤s x s x . 

For the uniform kernel, all neighbors of (s, x) in the set {(s1, x1), …, (sN, xN)} that are within bandwidth hN 

are weighted equally in the computation of the objective function  

  ( )Kˆ |Nv z x = ( ) ( )K

1
, , ,

N
i

N
i

w i v
=
∑ s x z y . 

2.2.3. Tree-based methods 

 ( )T , ,Nw is x =
( ) ( )( )
( ) ( )( )

1

, ,

, ,

i i

N
j j

j

I R R

I R R
=

=

=∑

s x s x

s x s x
 

where R is a function that maps a vector into a terminal node (or leaf) of the tree. We see that all points in 

{(s1, x1), …, (sN, xN)} that result in the same terminal node as (s, x) are weighted equally. 

2.2.4. Ensembles, e.g., random forest 

( )RF , ,Nw is x =
( ) ( )( )
( ) ( )( )1

1

, ,1

, ,

k i i kT

N
k j j kk

j

I R R

T I R R=

=

=

=
∑
∑

s x s x

s x s x
 

where T is the number of trees and Rk is the function for tree k = 1, …, T.  

3. Coefficient of Prescriptiveness 

The R2 of a predictive model is a measure of the model’s accuracy or explanatory power. It measures the 

fraction of the variance of the uncertain response that is reduced (or explained) by a prediction based on 

observables.  

For example, suppose model mN that maps (s, x) into response y is estimated using dataset SN =     

{(x1, y1, z1) , …, (xN, yN, zN)}. We may wish to measure the predictive quality of model mN using a 

validation dataset 
vNS = ( ) ( ){ }1 1 1, , ,..., , ,v v vN N Ny yx z x z  of Nv observations that is separate from SN. The 

coefficient of determination of model mN on dataset 
vNS is  

  R2 =
( )( )2

1
2

1 1

,
1

/

v

v v

N
i i i

N
i

N N
i j

v
i j

y m

y y N

=

= =

−
−

 
− 

 

∑

∑ ∑

s x
, 

e.g., R2 is a measure of out-of-sample predictiveness of model mN. 

From the above expression, it is clear that R2 can also be interpreted as the fraction of the way that the 

predictive model goes from the extreme of a naïve prediction model that is based on the average response,  
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prediction =
1

/
vN

j
v

j
y N

=
∑ ,                    (3) 

to the extreme of a perfect prediction model (i.e., model that maps ( ),i is x  into iy for any i). In other 

words, it measures the relative predictive content of the data through model mN. 

Bertsimas and Kallus (2020) propose a coefficient of prescriptiveness, denoted P, that parallels this 

latter interpretation of the coefficient of determination. Suppose that ( )ˆ Nz x is a predictive prescription 

that is estimated using dataset SN. Recall that 
vNS is a validation dataset that is separate from SN. The value 

of P for ˆ Nz on dataset 
vNS is computed using three terms: 

( )ˆ ˆ
vN Nv z = ( )( )

1

1 ˆ ,
vN

i i
N

iv

v
N =
∑ z x y  

  *ˆ
vNv = ( )

1

1 max ,
vN

i

iv

v
N ∈

=
∑ z Z

z y  

  SAAˆ
vNv = ( )SAA

1

1 ˆ ,
vN

i
N

iv

v
N =
∑ z y  

where  

  SAAˆ Nz ∈ ( )
1

1arg max ,
N

i

i
v

N∈ =
∑

z Z
z y . 

We see that ( )ˆ ˆ
vN Nv z  is the average out-of-sample performance of predictive prescription ˆ Nz . The 

value of *ˆ
vNv represents the extreme of perfect out-of-sample performance. For each response iy , the value 

of ( )max , iv
∈z Z

z y  is the highest possible performance, e.g., best performance with a perfect prediction 

model. The value of SAAˆ
vNv represents the other extreme. It is based on decision SAAˆ Nz that maximizes 

average performance over all observed responses in the training dataset, and ignores the predictor. 

Decision SAAˆ Nz is called the sample average approximation (SAA) prescription; it is analogous to a 

prediction based on the average of observed responses (as in (3)).2  

The coefficient of prescriptiveness is 

 P =
( )*

* SAA

ˆ ˆ ˆ
1

ˆ ˆ
v v

v v

N N N

N N

v v
v v
−

−
−

z
. 

                                                      
2 If y is independent of x (i.e., x has no predictive content), then the SAA prescription is a reasonable choice because 
it appropriately ignores irrelevant data. 
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Similar to the spirit of the coefficient of determination, P measures the fraction of the way that the 

prescriptive model goes from the extreme of a naïve prescription model that is based on the average 

performance to the extreme of the best prescription under perfect prediction. In other words, it measures 

the relative prescriptive content of the data through model ˆ Nz  on validation dataset 
vNS .  

 The value of P is a unitless measure of the prescriptive content, and thus like R2, has the advantage of 

providing a universal measure of “model fit” across applications. However, the ranking of P values for 

alternative models on validation dataset 
vNS is determined by the ranking of ˆ

vNv . For example, suppose 

two predictive prescriptions 1ˆ Nz and 2ˆ Nz are derived from a training dataset SN. Then  

( )1ˆ ˆ
vN Nv z = ( )( )1

1

1 ˆ ,
vN

i i
N

iv

v
N =
∑ z x y > ( )( )2

1

1 ˆ ,
vN

i i
N

iv

v
N =
∑ z x y = ( )2ˆ ˆ

vN Nv z  implies 1ˆ N
P

z
> 2ˆ N

P
z

 

(because the values of *ˆ
vNv and SAAˆ

vNv are independent of the predictive prescription). We raise this point to 

clarify a risk that can arise when training a prescriptive model that does not arise when training a 

predictive model. In particular, if the decision z only affects the performance measure and does not affect 

the uncertain response (i.e., settings where z = t), then ( )( )1ˆ ,i i
Nv z x y is an accurate measure of 

performance of decision ( )1ˆ i
Nz x applied to observation i in the validation dataset. Just as a measure of 

out-of-sample predictive error can be used to train a predictive model, the value of P can be used to train 

a prescriptive model (e.g., train function wN that is used in (2)). However, the value of P as an out-of-

sample measure of performance becomes less accurate in settings where the decision has a large effect on 

the uncertain response.3 In such settings, promising predictive prescriptions identified via machine-

learning methods may be further evaluated through pilot tests in the field (e.g., A/B testing). 

4. Summary 

Predictive analytics is the application of statistical methods and machine learning to data with the goal of 

minimizing out-of-sample prediction error. The output of predictive analytics is a predictive model, which 

may be used as an input to an optimization algorithm. This is a classical approach to prescriptive 

analytics, i.e., estimate a model with the objective of minimizing prediction error, then use the model in 

an optimization algorithm. 

 This teaching note outlines an alternative integrated approach that explicitly accounts for estimation 

error in the optimization step. It presents a framework for directly translating data into a prescription. It 

                                                      
3 On the negative side, settings in which z affects y can introduce error when training a prescriptive model. But there 
is also a positive result. There is theory that shows that a predictive prescription obtained from the framework 
defined in (2) approaches the true optimal predictive prescription as the sample size N increases. This result holds 
when kernel methods are used to estimate function wN and under several relatively mild assumptions (see Bertsimas 
and Kallus 2020). 
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explains the essence of how to apply statistical methods and machine learning to data with the goal of 

minimizing out-of-sample prescription error. This is an important, new, and growing research area. Every 

student of business analytics and data science and should be aware of this emerging area. 
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